Rapamycin regulates endothelial cell migration through regulation of the cyclin-dependent kinase inhibitor p27Kip1.

نویسندگان

  • Stephanie C Moss
  • Daniel J Lightell
  • Steven O Marx
  • Andrew R Marks
  • T Cooper Woods
چکیده

Rapamycin is a macrolide antibiotic that inhibits vascular smooth muscle cell proliferation and migration and that is used clinically on drug-eluting stents to inhibit in-stent restenosis. Although inhibition of cell migration is an asset in preventing restenosis, it also leads to impaired stent endothelialization, a significant limitation of current drug-eluting stent technology that necessitates prolonged antiplatelet therapy. We measured the ability of rapamycin to inhibit the migration of human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAEC) toward the chemoattractant vascular endothelial cell growth factor. Although acute administration of rapamycin had no effect, exposure for 24 h inhibited HUVEC and HCAEC migration. Disruption of the mTORC2 via small interfering RNA was also effective in inhibiting HCAEC migration. Treatment of HCAECs for this period with rapamycin produced an increase in the cyclin-dependent kinase inhibitor p27(Kip), through a decrease in the targeting of the protein for degradation by phosphorylation at Thr(187). ECs isolated from a knock-in mouse expressing p27(Kip1) with a mutation of this residue to an alanine, blocking this phosphorylation, exhibited reduced migration compared with wild-type controls. Silencing of p27(Kip1) with small interfering RNA blocked the effects of rapamycin on migration and tube formation as well as RhoA activation and cytoskeletal reorganization. We conclude that prolonged exposure of ECs to rapamycin increases p27(Kip1) and in turn inhibits RhoA activation, blocking cell migration and differentiation. These data elucidate the molecular mechanism underlying regulation of p27(Kip1) protein and cell migration by rapamycin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dysregulation of the Mammalian Target of Rapamycin and p27Kip1 Promotes Intimal Hyperplasia in Diabetes Mellitus

The proliferation and migration of vascular smooth muscle cells (VSMCs) in the intima of an artery, known as intimal hyperplasia, is an important component of cardiovascular diseases. This is seen most clearly in the case of in-stent restenosis, where drug eluting stents are used to deliver agents that prevent VSMC proliferation and migration. One class of agents that are highly effective in th...

متن کامل

The upregulation of p27Kip1 by rapamycin results in G1 arrest in exponentially growing T-cell lines.

An immunosuppressant Rapamycin (Rap) has been reported to cause G1 arrest by inhibiting p70 S6 kinase and G1 cyclin/cdks kinase activities when added to quiescent cells with mitogens. However, antiproliferative effects of Rap on exponentially growing cells have been poorly investigated. We examined the intracellular events after the treatment of Rap in exponentially growing T cells and found th...

متن کامل

Anti-angiogenic effects of Siegesbeckia glabrescens are mediated by suppression of the Akt and p70S6K-dependent signaling pathways.

Siegesbeckia glabrescens (SG) Makino (Compositae) has been used as a traditional medicine for the treatment of allergic and inflammatory diseases. In the present study, we report the effects and molecular mechanism of an ethanolic extract of SG on cell proliferation, migration and tube formation in vascular endothelial growth factor-A (VEGF-A)-treated human umbilical vein endothelial cells. SG ...

متن کامل

11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1.

Cytochrome P450-derived epoxyeicosatrienoic acids (EETs) stimulate endothelial cell proliferation and angiogenesis. In this study, we investigated the involvement of the forkhead box, class O (FOXO) family of transcription factors and their downstream target p27Kip1 in EET-induced endothelial cell proliferation. Incubation of human umbilical vein endothelial cells with 11,12-EET induced a time-...

متن کامل

[p27Kip1 independently promotes neuronal differentiation and migration in the cerebral cortex].

The generation of glutamatergic neurons by stem and progenitor cells is a complex process involving the tight coordination of multiple cellular activities, including cell cycle exit, initiation of neuronal differentiation and cell migration. The mechanisms that integrate these different events into a coherent program are not well understood. Here we show that the cyclin-dependent kinase inhibit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 16  شماره 

صفحات  -

تاریخ انتشار 2010